

Rethinking mining demand for battery minerals

Data-driven insights on enabling an efficient, responsible battery supply chain

February 26, 2025

Transforming how we produce and use energy...

A Bold Goal: **1.5°C 4**50% CO₂ BY 2030

To power key sectors...

Carbon-Free Industry

Buildings

Carbon-Free Electricity

Accelerated by market catalysts...

Policy

Finance

<u></u>

Business

Models

Data &

Transparency

Technology

Education & Capacity

Across critical global geographies.

Battery Circular Economy Initiative (BCEI)

Supply chain does not become the limiting factor for the EV transition. Materials are sourced responsibly and used efficiently.

Battery demand is growing exponentially

Battery uptake by sector

Faster

...Which means mineral demand will boom

Battery mineral demand growth outlook, 2023-2040

Today's session

How can we bend the curves of supply and demand to reach net zero mineral extraction for batteries?

What do the costs and returns of battery recycling look like if you factor in externalities?

What actions do stakeholders need to take to help us achieve this vision?

RMI - Energy. Transformed.

Agenda

1. Bending the curve

- 2. ROI of battery recycling
- 3. Stakeholder action
- 4. Q&A

There are six alternatives to mining for battery minerals

Higher energy

Pack more energy

into a kilogram of

1. Different chemistries

旨

2.

Switch to battery chemistries that use fewer critical minerals

4. Reuse and extended life

Use and reuse batteries for longer

battery 5. Efficient vehicles

density

Improve vehicle efficiency and rightsize cars for purpose Recover battery minerals at end of life to re-use

mobility

6. Efficient

3. Recycling

Improve urban planning and increase alternate transport

Three solutions have already made a major impact

Nickel

Lithium

Cobalt

Source: RMI (The Battery Mineral Loop). Recycling includes recycling of production scrap, which is generally economic already.

The impact of chemistry change

Chemistry mix

This outlook only includes simply scaling up current battery mineral demand in line with battery demand. It is not representative of a realistic scenario and is purely illustrative.

Battery mineral demand before & after chemistry mix change - Fast scenario

Part of cobalt's decline is from the sectoral redistribution of demand.

RMI – Energy. Transformed.

Source: BNEF Long-Term Electric Vehicle Outlook (2024), RMI (The Battery Mineral Loop)

The impact of energy density change

rate

Learning

Avg. energy density of traditional LIBs

Battery mineral demand before & after density improvements – Fast scenario

Source: BNEF Lithium-Ion Batteries: State of the Industry (2023), RMI (The Battery Mineral Loop). Outlook chart excludes the density effects of chemistry change to avoid double-counting.

The impact of recycling

Collection rate

Recovery rate

Net battery mineral demand before & after recycling – Fast scenario

Source: BNEF Lithium-Ion Battery Recycling Availability Model (2024), Gaines et al. (2023), RMI (The Battery Mineral Loop)

Peak battery mineral demand in a decade

Lithium

Nickel

Cobalt

RMI – Energy. Transformed.

Source: RMI X-Change Batteries, RMI (The Battery Mineral Loop). Note: Part of the effect of cobalt chemistry change comes from the sectoral redistribution of demand.

The accelerated case

Acceleration means a lower and earlier peak

Nickel

Lithium

Cobalt

Circular self-sufficiency is possible

* Accelerated case

+About 25% for lithium, about 50% or more for nickel and cobalt

RMI – Energy. Transformed.

Source: RMI analysis. Useful battery lifetime of a decade is indicative; lifetimes are likely longer.

Net-zero mineral demand before 2050 is possible

Mineral demand, accelerated trend, faster battery uptake scenario

Assumes recycling of all minerals in batteries.

Source: RMI analysis

Now, other groups are arriving at similar findings

climate +community project

Achieving Zero Emissions with More Mobility and Less Mining

UCS, December 2024

Sources: International Council on Clean Transportation; Union of Concerned Scientists; University of California, Davis

One-off minerals versus continuous oil extraction

Virgin material extraction, million tons

Accelerated scenario; faster uptake. Mass of other elements in transported ore are based on the typical mineral concentration of products leaving the mining site — i.e., after typical on-site concentration of natural ore. Cost is calculated based on current wholesale prices for extracted products; no refining or other costs are included.

Total cost

Agenda

1. Bending the curve

2. Costs & returns of battery recycling

- 3. Stakeholder action
- 4. Q&A

A holistic perspective of recycling is needed

Jobs

Economic growth

Financial returns

Emissions

Land use

Water use

What metrics does a triple bottom-line analysis include?

The financial profitability of recycling varies greatly

Value of social benefits remain unaccounted in traditional business models

Revenue and costs in \$ per ton battery recycled

Recycling profits are driven by metal market prices and economies of scale

The value of recycling is not reflected in P&L assessments

A triple bottom-line assessment determines the social value generated

RMI - Energy. Transformed.

CASE STUDY

Metal Focus: Lithium

Process: Traditional ore mining **Purpose**: Baseline

Process: Direct lithium extraction with geothermal **Purpose**: Assess impact of technological innovation

Process: Recycling **Purpose:** Assess impact of circular approaches

Comparative assessment of externalities

The social and environmental value generated by recycling is \$170-\$700 greater per ton of LCE

200 Mining DLE -200 Recycling -400 -600-800 Water use Economic Land use Carbon Jobs Total emissions activity

Externalities In \$ Per Ton of Lithium Carbonate Equivalent Produced

The case for policy interventions and incentives

Unlocking the social value requires de-risking recycling business models

Recycling of LFP is challenging ...

Profit margins sensitivity to metal prices Profits per ton of LCE produced

... but incentives can help de-risk

Indicative effect of incentives on profit margin Allocating \$2400 in incentives per ton of battery

-42.0%	4.0%

Incentive allocated (\$/ton)	1500	1875	2250	2340	2415
Profit Margin	-42%	-23%	-4%	0%	4%

Agenda

1. Bending the curve

2. Costs & returns of battery recycling

3. Stakeholder action

4. Q&A

BCEI Dashboard: Battery Mineral Loop

BCEI Dashboard: US Supply Chain

2030 Demand Scenario 🥡 User Defined Without IRA IRA Level (i) **Demand** (GWh/yr) **CIRCULARITY INPUTS** Battery Life (years) (i) Collection Efficiency (%) Recycling Capacity (%) (i) Recovery Rate Lithium (%) (i)

DEMAND INPUTS

Powering the Future

Overcoming Battery Supply Chain Challenges with Circularity

Challenges Solutions				
Lack of transparency across the full value chain	Track-and-trace platforms			
Battery design and lack of data access	Design change and data standards			
Challenging economics of recycling and second life	Policy to address economic and technical challenges			
Vulnerabilities and inequitable harms and benefits of value chain design	Regional value chains and cross-border movement			
Workforce transition needs	Workforce development and transition			
Source: RMI, World Economic Forum, Global Battery Alliance				

Thank You!

Laura LoSciuto

Manager, Carbon-Free Transportation laura.losciuto@rmi.org

Sudeshna Mohanty

Senior Associate, Carbon-Free Transportation smohanty@rmi.org