

### Energy Storage Options for a Renewable Power Supply System

SEI Seminar Series – Toronto, March 12th, 2013

**Dirk Uwe Sauer** 

email: sr@isea.rwth-aachen.de

#### Chair for Electrochemical Energy Conversion and Storage Systems

Institute for Power Electronics and Electrical Drives (ISEA) & Institute for Power Generation and Storage Systems @ E.ON ERC RWTH Aachen University

14.03.2013 Dirk Uwe Sauer





#### Share of power generation technologies



## Storage demand for power supply for Germany for 100% renewables



#### "Daily storage"

- 30 50 GW
- 2 4 hours energy

#### "Long-term storage"

- 40 60 GW (discharge)
- Up to a maximum of 3 weeks





Rough estimation based on different studies, only for estimation of storage demands



### Example for size of battery storage systems

- 20 foot container with 1 MWh / 1 MW
- Offer of Hannover Fair 2012 for about 600,000 € (incl. power electronics, no medium voltage connection)
- 600 containers of such type deliver the full primar control power for Germany



14.03.2013

Dirk Uwe Sauer

### Example for size of battery storage systems

 Latest class of conatiner ships offer space for 15.000 Container (area about 400 m x 56 m)



5

Institut für Stromrichtertechnik und Elektrische Antriebe



#### Example for size of battery storage systems

- Latest class of conatiner ships offer space for 15.000 Container (area about 400 m x 56 m)
- Filled with operational battery containers this is equivalent with 15 GWh / 15 GW



### Example for size of battery storage systems



 Latest class of conatiner ships offer space for 15.000 Container (area about 400 m x 56 m)

- Filled with operational battery containers this is equivalent with 15 GWh / 15 GW
- German pumped hydro systems together have 40 GWh / 6 GW





#### Example for size of hydrogen storage system



- Today existing cavern capacity in Germany for natural gas (methane): approx. 20 billion Nm<sup>3</sup>
- Filled with hydrogen allows to serve Germany for 3 weeks with power (reconversion with 60% efficiency)



14.03.2013

Dirk Uwe Sauer



9

# The problem about storage technologies is cost, not space or technology !

There is no need for creating new storage technologies, there is a need for life cycle cost reductions.

There is need for improving the technology for lowering the life cycle cost (including increasing the efficiency).



# 100% Renewables needs flexibility in power supply and power consumption.

Storage technologies is one out of several technologies to serve this flexibility.

14.03.2013

Dirk Uwe Sauer

Classification of flexibility options: **Duration of supply** 



- "seconds to minutes" short-term energy storage
- "daily storage" medium-term energy storage
- "weekly to monthly storage" long-term energy storage
  - Reactive power
  - Primary (frequency) control power
  - Secondary control power
  - Minute reserve
  - Spread in energy trading
  - Power plant scheduling

- ➔ "seconds to minutes"
- ➔ "seconds to minutes"
- ➔ "daily storage"
- ➔ "daily storage"
- ➔ "daily storage"
- ➔ "weeks to month"



#### Possible technologies:

- Hydro storage systems and pumped hydro storage systems (limited sites e.g. in Scandinavia)
- Hydrogen storage systems (and maybe its derivatives such as CH<sub>4</sub> known as "power to gas" – or methanol)



hydrogen or CH<sub>4</sub> ("power to gas")



hydro storage

14.03.2013

Dirk Uwe Sauer



#### Classification of flexibility options: Location of storage system



- "Centralised storage technologies"
- "Modular storage technologies for grid use only"
- "Modular storage systems with double use"



- Storage systems are purchased for another primary reason
- Grid services offer additional income
- Very high potential





Self consumption in PV systems

Demand side management (e.g. space heating)

 Newly build centralized storage systems (e.g. pumped hydro, compressed air) will have difficulties to compete

14.03.2013 Dirk Uwe Sauer

Classification of flexibility options: Quality of supply

- "Electricity to Electricity" positive and negative control power
  - Storage system takes electricity from the grid and supplies electricity back into the grid
- "Anything to electricity" positive control power
  - Generation of electricity from any type of stored energy carrier or by shutting down power consumers
- "Electricity to anything" negative control power
  - Electricity is converted into a energy carriers with lower exergy or it is wasted





Institut für Stromrichtertechnik und Elektrische



### **Careful definition required**



#### "power to gas"

**Electrical power is converted into hydrogen** (or methan or methanol or cabazol or ...) **for the use outside the electrical power sector** (e.g. mobility, heat, chemical industry).

"gas storage system" (analog to e.g. "compressed air storage system CAES)

Electrical energy is converted into hydrogen gas, hydrogen is stored (e.g. in underground caverns) and it is reconverted into electrical energy.

#### **Functions**



#### "power to gas"

- Delivers negative control power
- Components: Electrolyser, maybe H<sub>2</sub> → CH<sub>4</sub> converter, gas pipelines and storage
- Transfers CO<sub>2</sub>-free in non-electrical energy sectors (today 2/3 of total energy consumption)

#### "gas storage system"

- Delivers positive and negative control power
- Components: Electrolyser, gas storage, fuel cell or gas turbine
- Is used as long-term storage
- Serves reliable power and replaces conventional back-up power plants
   14.03.2013 Dirk Uwe Sauer 19





### **Calculation of life-cycle costs**



#### Long term storage system

- Institut für Stromrichtertechnik und Elektrische Antriebe
- 500 MW, 100 GWh, 200 h full load, ~1.5 cycle per month (optimistic cycle number, simulations show 1 – 2 cycles/year for three week storage systems)



Quelle: ENERGY STORAGE FOR IMPROVED OPERATION OF FUTURE ENERGY SUPPLY SYSTEMS , M. Kleimaier, et.al., CIGRE 2008

#### Load-Levelling



1 GW, 8 GWh, 8 h full load, 1 cycle per day





#### **General**

Grids allow a shift of energy in space.

Storage systems allow a shift of energy in time.

#### Transport grid

No storage system is cheap enough to justify not to build a transmission line if an energy consumer can be found in the point of time somewhere in space.

#### **Distribution grid**

Things are more complex, between extensions in the distribution grid result in three to five time higher specific costs compared with the transport grid.

14.03.2013 Dirk Uwe Sauer

#### Storage classification: "electricity to electricity"



| "Electricity to Electricity"<br>storage systems only     |                  | "seconds to minutes"<br>storage systems | "daily" storage systems | "weekly to monthly" storage systems |
|----------------------------------------------------------|------------------|-----------------------------------------|-------------------------|-------------------------------------|
|                                                          | E2P ratio        | < 0.25 h                                | 1 - 10 h                | 50 - 500 h                          |
|                                                          | typical power    |                                         |                         |                                     |
| modular storage<br>systems with<br>double use            | 1 kW -<br>1 MW   |                                         |                         |                                     |
| modular storage<br>technologies for<br>grid control only | 1 kW -<br>100 MW |                                         |                         |                                     |
| centralised storage technologies                         | 100 MW -<br>1 GW |                                         |                         |                                     |

### Storage classification: "electricity to electricity"





#### Storage classification: "electricity to electricity"



| "Electricity to Electricity"<br>storage systems only     |                  | "seconds to minutes"<br>storage systems | "daily" storage systems | "weekly to monthly" storage systems |
|----------------------------------------------------------|------------------|-----------------------------------------|-------------------------|-------------------------------------|
|                                                          | E2P ratio        | < 0.25 h                                | 1 - 10 h                | 50 - 500 h                          |
|                                                          | typical power    |                                         |                         |                                     |
| modular storage<br>systems with<br>double use            | 1 kW -<br>1 MW   |                                         |                         | Doppelschicht-<br>kondensatoren     |
| modular storage<br>technologies for<br>grid control only | 1 kW -<br>100 MW | NiCd / NiMH Lith                        | ium-Ionen-Batterien     |                                     |
| centralised storage<br>technologies                      | 100 MW -<br>1 GW |                                         |                         | Schwungrad                          |

### Storage classification: "electricity to electricity"



| "Electricity to E<br>storage syste                       | electricity"<br>ms only | "seconds to minutes"<br>storage systems | "daily" storage systems | "weekly to monthly" storage systems |
|----------------------------------------------------------|-------------------------|-----------------------------------------|-------------------------|-------------------------------------|
|                                                          | E2P ratio               | < 0.25 h                                | 1 - 10 h                | 50 - 500 h                          |
|                                                          | typical power           |                                         |                         |                                     |
| modular storage<br>systems with<br>double use            | 1 kW -<br>1 MW          |                                         |                         |                                     |
| modular storage<br>technologies for<br>grid control only | 1 kW -<br>100 MW        | Elektromo                               | bilität<br>Ei<br>ir     | genverbrauch<br>n PV-Anlagen        |
| centralised storage<br>technologies                      | 100 MW -<br>1 GW        |                                         |                         |                                     |
| 14.03.2013                                               | Dirk Uw                 | e Sauer                                 |                         | 29                                  |

14.03.2013

29

#### Storage classification: "electricity to electricity"



| "Electricity to Electricity"<br>storage systems only     |                  | "seconds to minutes"<br>storage systems | "daily" storage systems | "weekly to monthly" storage systems                  |
|----------------------------------------------------------|------------------|-----------------------------------------|-------------------------|------------------------------------------------------|
|                                                          | E2P ratio        | < 0.25 h 1 - 10 h                       |                         | 50 - 500 h                                           |
|                                                          | typical power    |                                         |                         |                                                      |
| modular storage<br>systems with<br>double use            | 1 kW -<br>1 MW   | NiCd / NiMH                             | edox-Flow Batteri       | en                                                   |
| modular storage<br>technologies for<br>grid control only | 1 kW -<br>100 MW |                                         |                         | Sart<br>Sart<br>Sart<br>Sart<br>Sart<br>Sart<br>Sart |
| centralised storage<br>technologies                      | 100 MW -<br>1 GW | Blei-Batterien, N                       | aS-Batterien Lithi      | ium-Ionen-Batterien                                  |

### Storage classification: "electricity to electricity"



| "Electricity to E<br>storage syste                       | Electricity"<br>ems only | "seconds to minutes"<br>storage systems | "daily" storage systems | "weekly to monthly" storage systems |
|----------------------------------------------------------|--------------------------|-----------------------------------------|-------------------------|-------------------------------------|
|                                                          | E2P ratio                | < 0.25 h                                | 1 - 10 h                | 50 - 500 h                          |
|                                                          | typical power            |                                         |                         |                                     |
| modular storage<br>systems with<br>double use            | 1 kW -<br>1 MW           |                                         |                         |                                     |
| modular storage<br>technologies for<br>grid control only | 1 kW -<br>100 MW         | Drucklu                                 | uft Pu                  | Impspeicher                         |
| centralised storage<br>technologies                      | 100 MW -<br>1 GW         |                                         |                         |                                     |
| 14.03.2013                                               | Dirk Uw                  | e Sauer                                 |                         | 31                                  |

#### Storage classification: "electricity to electricity"



| "Electricity to Electricity"<br>storage systems only     |                  | "seconds to minutes"<br>storage systems | "daily" storage systems                                                                  | "weekly to monthly" storage systems |
|----------------------------------------------------------|------------------|-----------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------|
|                                                          | E2P ratio        | < 0.25 h                                | 1 - 10 h                                                                                 | 50 - 500 h                          |
|                                                          | typical power    |                                         |                                                                                          |                                     |
| modular storage<br>systems with<br>double use            | 1 kW -<br>1 MW   | Hydrogen<br>Understander                | Cethode Ande Cygen<br>October Orygen<br>Determined of the states<br>Standard Electrolyus |                                     |
| modular storage<br>technologies for<br>grid control only | 1 kW -<br>100 MW | Wasserstoffspeid                        | chersystem                                                                               |                                     |
| centralised storage<br>technologies                      | 100 MW -<br>1 GW |                                         | sehr                                                                                     | große Pumpspeicher                  |

14.03.2013



#### Comparison of flexibility options for "daily" storage systems



| "Daily" storage systems                                  |                             | Electricity to Electricity storage systems only                                                                                                                           | "Anything to electricity" positive control power                                                                                                                         | "Electricity to Anything" negative control power                                                                                                                                                                                                    |
|----------------------------------------------------------|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                          |                             |                                                                                                                                                                           |                                                                                                                                                                          |                                                                                                                                                                                                                                                     |
|                                                          | typical power               |                                                                                                                                                                           |                                                                                                                                                                          |                                                                                                                                                                                                                                                     |
| modular storage<br>systems with<br>double use            | 1 kV<br>1 kV                | electric and plug-in hybrid<br>vehicles with bi-<br>directional charger<br>- grid-connected PV-battery<br>systems                                                         | <ul> <li>CHP units with thermal storage</li> <li>Demand side manag. (DSM) of electrical loads (shut down)</li> <li>Electric vehicles and PHEV (stop charging)</li> </ul> | <ul> <li>electric domestic house<br/>heating or cooling incl.<br/>heat pumps</li> <li>demand side management<br/>(household &amp; industry)</li> <li>cooling devices</li> <li>electric vehicles &amp; PHEV<br/>(uni-directional charger)</li> </ul> |
| modular storage<br>technologies for<br>grid control only | 1 kl<br>100<br>Jinect compe | <ul> <li>lead-acid batteries</li> <li>lithium-lon batteries</li> <li>NaS batteries</li> <li>redox-flow batteries</li> <li>zinc-bromine flow</li> <li>batteries</li> </ul> | - bio-gas power plants                                                                                                                                                   | <ul> <li>hydrogen for direct use<br/>(e.g. in the traffic secor)</li> <li>methan or methanol made<br/>from CO2 and hydrogen</li> <li>shut down of renewables<br/>(wind, PV)</li> </ul>                                                              |
| centralised storage<br>technologies                      | 100 N                       | - pumped hydro<br>- compressed air<br>(diabatic or adiabatic)                                                                                                             | <ul> <li>gas power plants</li> <li>coal power plants</li> <li>hydro storage</li> <li>solar thermal power<br/>plants with heat storage</li> </ul>                         | <ul> <li>hydrogen for direct use</li> <li>(e.g. in the traffic secor)</li> <li>methan or methanol made</li> <li>from CO2 and hydrogen</li> </ul>                                                                                                    |

PGS | Institute for Power Generation and Storage Systems

#### Storage Technologies - Overview





### Supercapacitors







- Electrical energy stored in static electric field between electrodes and ions in the electrolyte
- Ion movement to the electrodes during charging
- Power and energy density between classical capacitors and batteries
- High cycle lifetime



### Supercapacitors

Applications

- Short-term and high power storage systems
- Hybrid storage systems in combination with batteries (to reduce dynamics on battery)
- Voltage stabilization in cars and trains

Development

- Lithium-ion supercaps
- Increases energy density by a factor of 2 to 3
- High power density and cycle lifetime

Institut für Stromrichtertechnik und Elektrische Antriebe

**IAACHFN** 

[[]][]

### Supercapacitors – Parameters

| Parameters for Super-<br>Capacitors | All numbers are indications and my vary significantly among different products and installations |                      |  |
|-------------------------------------|--------------------------------------------------------------------------------------------------|----------------------|--|
|                                     | Today                                                                                            | 2030                 |  |
| Round-trip efficiency               | 90 % to 94 %                                                                                     | No numbers available |  |
| Energy density                      | 2 Wh/ I to 10 Wh/ I                                                                              |                      |  |
| Power density                       | up to 15 kW/ I                                                                                   |                      |  |
| Cycle life                          | up to one million                                                                                |                      |  |
| Calendar Life                       | 15 years                                                                                         |                      |  |
| Depth of discharge                  | 75 %                                                                                             |                      |  |
| Self-discharge                      | up to 25% in the first 48 hours, afterwards very low                                             |                      |  |
| Power installation cost             | 10 €/ kW to 20 €/ kW                                                                             |                      |  |
| Energy installation cost            | 10,000 €/ kWh to 20,000 €/ kWh                                                                   |                      |  |
| Deployment time                     | < 10 ms                                                                                          |                      |  |
| Site requirements                   | None                                                                                             |                      |  |
| Main applications                   | Primary frequency control, voltage control, Peak shaving, UPS                                    |                      |  |

14.03.2013

Dirk Uwe Sauer

### Supercapacitors – SWOT

|          | Superca                                                                                     | apacitors                                                                                               |  |
|----------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--|
|          | Strengths                                                                                   | Weaknesses                                                                                              |  |
| Internal | <ul><li>High efficiency</li><li>High power capability</li><li>Long cycle lifetime</li></ul> | <ul> <li>Low energy density</li> <li>High costs per installed energy</li> </ul>                         |  |
|          | Opportunities                                                                               | Threats                                                                                                 |  |
| External | <ul> <li>Applications with very<br/>high power demand and<br/>cycle load</li> </ul>         | <ul> <li>High power applications<br/>might be served by high<br/>power lithium-ion batteries</li> </ul> |  |

Institut für Stromrichlertechnik und Elektrische Antriebe





# "Retrofit " of existing hydro power plants with a pumping system



- Huge capacity in existing water reservoirs
- Retrofit with pumps
- Evaluation of potential is needed critical point is the connection to sufficient base reservoir

storage



Artificial lake with natural feeders

14.03.2013

Dirk Uwe Sauer



JÜLICH

### Pumped hydro storage in federal waterways – using small differences in water levels

#### View of ship lift Lüneburg





#### Applications

- Medium-term storage with 2 to 8 hours discharge time
- Long-term storage (several weeks) with hydro storage in Norway
  - Pumping option and lower reservoir have to be added

Development

- No big improvements in efficiency and costs (established technology)
- Limited sites available in Central Europe
- Retrofitting of existing plants with higher power

14.03.2013

Dirk Uwe Sauer

### Pumped Hydro – SWOT



|          | Pump                                                                                                                                                                                                            | ed Hydro Power                                                                                                                                                                                                                                                                                                                                                     |  |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|          | Strengths                                                                                                                                                                                                       | Weaknesses                                                                                                                                                                                                                                                                                                                                                         |  |
| Internal | <ul> <li>Established technology</li> </ul>                                                                                                                                                                      | Low energy density                                                                                                                                                                                                                                                                                                                                                 |  |
|          | Very long life-time                                                                                                                                                                                             | Geographical restriction                                                                                                                                                                                                                                                                                                                                           |  |
|          | <ul> <li>Low self-discharge</li> </ul>                                                                                                                                                                          | • High investment costs and long return of                                                                                                                                                                                                                                                                                                                         |  |
|          | Good efficiency                                                                                                                                                                                                 | investment (> 30 years)                                                                                                                                                                                                                                                                                                                                            |  |
|          | Opportunities                                                                                                                                                                                                   | Threats                                                                                                                                                                                                                                                                                                                                                            |  |
| External | <ul> <li>Very large additional potential in<br/>Norway and Sweden, some<br/>smaller potential elsewhere</li> <li>Storage costs are very<br/>competitive compared with<br/>other storage technologies</li> </ul> | <ul> <li>Lengthy approval processes, high environmental standards</li> <li>Increasing competition from decentralized storage systems</li> <li>High power requires connection to the transmission grid and therefore cannot solve problems in the distribution grid</li> <li>Pumped Hydro in Norway: Public and political acceptance critical due to the</li> </ul> |  |







| <ul> <li>Strengths</li> <li>Relatively low cost for the energy stor<br/>(caverns)</li> </ul>                                                                                                                   | Weaknesses                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Relatively low cost for the energy stor<br/>(caverns)</li> </ul>                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                | <ul> <li>Certain geological restrictions necessary<br/>(pressure-tight cavern)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                   |
| <ul> <li>Small footprint on surface due underground storage</li> <li>Long life of the air reservoir (cavern) and power systems (compressors, turbine)</li> <li>Low self-discharge of compressed air</li> </ul> | <ul> <li>High investment costs</li> <li>Only two (and old) diabatic pilot plants, no adiabatic power plants available yet</li> <li>Thermal storage for adiabatic CAES not yet demonstrated in full scale</li> <li>High self-discharge of the thermal storage</li> <li>Low efficiency for diabatic CAES (&lt; 55%)</li> <li>Long return of investment (&gt; 30 years)</li> <li>Only large units connected to the transmission grid are economical</li> </ul> |
| Opportunities                                                                                                                                                                                                  | Threats                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <ul> <li>Successful demonstration of the technol could help a short time-to-market</li> <li>Good regional correlation between cave and high wind areas in Germany</li> </ul>                                   | <ul> <li>Limited number of suitable sites for caverns</li> <li>Competition in the use of caverns (e.g. gas or oil storage)</li> <li>Increasing competition from decentralized storage systems</li> <li>Limited number of locations outside Germany</li> <li>High power requires connection to the transmission grid and therefore cannot solve problems in the distribution grid</li> </ul>                                                                 |
| 4.03.2013 Dirk Uwe Sauer                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |











Long lifetime (compared to lead-acid batteries)



Applications

- Short- and medium-term storage
- Portable applications (mobile phones, laptops etc.)
- Electric Vehicles
- More and more in stationary applications (MW battery containers, PV-home-systems)

Development

- Large variety of electrolytes and combinations of electrodes exist
  - Different characteristics
  - Different costs
- Main development paths
  - Cost reduction (life cycle costs)
  - □ Safety

14.03.2013

Dirk Uwe Sauer

Lithium-ion Batteries – SWOT



| Lithium-Ion-Battery |                                                                                                                                        |                                                                                                                                                                 |  |  |  |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                     | Strengths                                                                                                                              | Weaknesses                                                                                                                                                      |  |  |  |
|                     | High energy density                                                                                                                    | <ul> <li>No inherent security (thermal runaway)</li> </ul>                                                                                                      |  |  |  |
| ernal               | <ul><li>Long lifetime</li><li>High performance</li></ul>                                                                               | <ul> <li>Sophisticated battery management system required (single cell monitoring)</li> </ul>                                                                   |  |  |  |
| Ē                   |                                                                                                                                        | <ul> <li>Packaging and cooling costly depending on<br/>the cell shape</li> </ul>                                                                                |  |  |  |
|                     |                                                                                                                                        | High costs                                                                                                                                                      |  |  |  |
|                     | Opportunities                                                                                                                          | Threats                                                                                                                                                         |  |  |  |
| ixternal            | <ul> <li>High number of items in the automotive industry lead to faster cost reduction</li> <li>No special requirements for</li> </ul> | <ul> <li>Social acceptance problems due to lithium mining in problematic countries possible</li> <li>Lithium resources limited to only few countries</li> </ul> |  |  |  |
|                     | storage location (no gassing)                                                                                                          | <ul> <li>High energy and power densities represent<br/>a low added value in most stationary<br/>applications</li> </ul>                                         |  |  |  |

| RNTHAACHEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | iser                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Innovative products                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | И                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |
| Li-ion battery module                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Standardized battery packs for Smart Homes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |
| Björn Eberleh, Akasol Engine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ering Andrew Kwon, Samsung SDI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
| <ul> <li>Carry-over parts from<br/>cost reductions</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | the automotive industry allow for significant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |
| <ul> <li>Standard units including power electronics lower costs</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |
| <ul> <li>Standard units includi</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ng power electronics lower costs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |
| Standard units includi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ng power electronics lower costs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |
| Standard units includi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ng power electronics lower costs Renewable Energy Storage Conference IRIS 2011 Folie 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
| Standard units includi  14.03.2013 International                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ng power electronics lower costs Renewable Energy Storage Conference IRIS 2011 Folie 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
| Standard units includi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ng power electronics lower costs<br>Renewable Energy Storage Conference IRIS 2011 Folie 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |
| • Standard units includi 14.03.2013 International Overview                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ng power electronics lower costs<br>Renewable Energy Storage Conference IRIS 2011 Folie 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |
| • Standard units includi 14.03.2013 International Overview                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ng power electronics lower costs<br>Renewable Energy Storage Conference IRIS 2011 Folie 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |
| • Standard units includi 14.03.2013 International Overview                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ng power electronics lower costs<br>Renewable Energy Storage Conference IRIS 2011 Foir 57<br>Electricity<br>Storage<br>Systems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
| • Standard units includi 14.03.2013 International Overview                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ng power electronics lower costs<br>Renewable Energy Storage Conference IRIS 201 Foir 57<br>Electricity<br>Storage<br>Systems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |
| • Standard units includi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ng power electronics lower costs<br>Mereable Energy Storage Conference IRIS 201<br>Thermal<br>Chemical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |
| • Standard units includi<br>14.03.2013 International<br>Overview<br>Electrical<br>• Super-Capacitor<br>• Super-Capacitor                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ne power electronics lower costs<br>Reveale Every Storage Conference IRIS 201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |
| • Standard units includi<br>14.03.2013 International<br>Overview<br>Electrical<br>• Super-Capacitor<br>• Flywheels | ng power electronics lower costs<br>Terrare<br>Terrare<br>Terrare<br>Terrare<br>Thermal<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemical<br>Chemica |  |  |  |  |  |  |

#### Lead-acid Batteries





- Only lead and sulfuric acid as active materials
- Electrolyte is part of the reaction
- Low energy density
- Low cycle lifetime (at high depths of discharge)
- Important technology for the near and mid-term future due to relatively low life cycle costs
- Major battery technology in stationary applications



- Short- and medium-term storage
  - Frequency control
  - Peak shaving
  - □ Load leveling
  - □ Island grids
  - Residential storage systems
  - □ Uninterruptible power supply
- 17 MW / 14 MWh storage system was operated by BEWAG in Berlin until 1986 (frequency control)

Development

- Cells and batteries for stationary applications not produced in large quantities (still high cost reduction potential)
- Lifetime improvement possible by optimizing cell design



| Lead-Acid-Battery         |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                          |  |  |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                           | Strengths                                                                                                                                                                                                                                                                                                  | Weaknesses                                                                                                                                                                                                                                                                               |  |  |
| Internal                  | <ul> <li>Today already high number of items</li> <li>Acceptable energy and power density for stationary applications</li> <li>Inherent safety by controlled overcharge reaction</li> <li>Experience with large storage</li> <li>Short amortization period and relatively low initial investment</li> </ul> | <ul> <li>Charging and discharging ability are not symmetrical</li> <li>Ventilation requirement</li> <li>Limited cycle life</li> <li>Industrial batteries are still not built with fully automatic systems</li> </ul>                                                                     |  |  |
|                           | Opportunities                                                                                                                                                                                                                                                                                              | Threats                                                                                                                                                                                                                                                                                  |  |  |
| External                  | <ul> <li>Significant cost savings through<br/>fully automated mass production<br/>possible</li> <li>Location independence</li> <li>Large number of manufacturers<br/>around the world</li> </ul>                                                                                                           | <ul> <li>Prohibition of the use of the heavy metal lead</li> <li>Very strong cost reduction with lithium-ion batteries (the same application segment)</li> <li>Limitations of the lead deposits</li> <li>Insufficient R&amp;D capabilities and experienced personal available</li> </ul> |  |  |
| 14.03.2013 Dirk Uwe Sauer |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                          |  |  |







Field results of a flow-battery supported an equivalent unsupported 340 kWp PV array - Chris Winter

#### M90 Flow battery flow Modular approach to making a larger flow battery system It uses standard 5kW/10kWh flow batteries connected in an array M90 contains: 24 flow batteries 240 kWh 90kW of PCS Fan based cooling A zinc-bromine flow battery operates from empty; so it can shift more energy per KWh installed 14.03.2013 **Dirk Uwe Sauer** 64





Applications

- Specific costs of storage volume are low
- Long-term storage ("dark calm" periods, around 3 weeks)
- Needed in electricity systems with high shares of renewables
- Island grids

Development

- No large scale plants in operation
- Electrolyzer well known from chemical industry
  - Increasing efficiency
  - Decreasing cost
  - Increasing flexibility
- Technology for hydrogen turbines is available
- Fuel-cells would improve overall efficiency

14.03.2013

Dirk Uwe Sauer

Hydrogen Storage – SWOT



| Hydrogen Storage System |                                                                                                                     |                                                                                                                |  |  |  |
|-------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--|--|--|
|                         | Strengths                                                                                                           | Weaknesses                                                                                                     |  |  |  |
| Internal                | <ul> <li>Low footprint, because of underground storage</li> </ul>                                                   | High costs for electrolyzers                                                                                   |  |  |  |
|                         | Sufficient experience with hydrogen                                                                                 | <ul> <li>Low efficiency (less relevant for long-term storage)</li> </ul>                                       |  |  |  |
|                         | <ul><li>storage in caverns</li><li>Very large amounts of energy can be</li></ul>                                    | <ul> <li>Storage density is about one-third lower than for methane</li> </ul>                                  |  |  |  |
|                         | <ul><li>stored</li><li>Water in unlimited quantities available</li></ul>                                            | • Hydrogen turbines for the reconversion is not yet available                                                  |  |  |  |
|                         | Opportunities                                                                                                       | Threats                                                                                                        |  |  |  |
| External                | <ul> <li>The only realistic option for long term<br/>storage of electricity</li> </ul>                              | Competition from long-term storage of<br>energy in Norwegian pumped storage power                              |  |  |  |
|                         | • Progress in the field of high-pressure                                                                            | plants                                                                                                         |  |  |  |
|                         | electrolyzers is expected                                                                                           | <ul> <li>Competition in the use of suitable caverns</li> </ul>                                                 |  |  |  |
|                         | <ul> <li>Synergies with the development of new<br/>power plant processes which use<br/>hydrogen-rich gas</li> </ul> | <ul> <li>Operating costs strongly depend on price of<br/>the purchasing power due to low efficiency</li> </ul> |  |  |  |
|                         | Hydrogen can also be used in other                                                                                  |                                                                                                                |  |  |  |

#### Methanation



- Hydrogen is converted to methane
  - □ External CO<sub>2</sub>-source is needed
  - Heat is produced
  - Overall efficiency only 35%
- Methanation makes sense, if energy should be removed from the electricity system and used for e.g. transportation
- Back-conversion of methane to electricity not favored due to additional losses compared to hydrogen



#### Summary

- Many different electricity storage systems exist, only a selection could be presented
- Each technology has its specific and application-sensitive advantages and disadvantages
- There is no generally superior electricity storage technology
- For a given application, the storage technology with the lowest life cycle costs should be selected
  - Careful analysis of application is necessary
  - Deep understanding of storage technology is necessary (e.g. lifetime)

14.03.2013

Dirk Uwe Sauer

# Policy strategies for advancing the widespread of storage technologies



- 1<sup>st</sup> step: Enlarging of research activity
  - Improving the technology basis
  - □ Increasing the number of skilled scientist and engineers
- 2<sup>nd</sup> step: Supporting demonstration programs
  - Learning from doing
  - Giving potential operators and investor the opportunity to see system operating
- 3<sup>rd</sup> step: Market introduction programs by subsidizing systems for users
  - Supporting technologies for markets which may become commercial in few years
  - Fostering development and manufacturing of mature systems for operation under real-world operation conditions
  - Reducing costs and prices by enlarging the production numbers

# Policy strategies for advancing the widespread of storage technologies



- 4<sup>th</sup> step: Changing legislations, standards and design rules (parallel to step 3)
  - Adapting existing standards and laws to allow a widespread market introduction of storage technologies
  - Removing barriers which may protect old technologies and players
  - Assuring independent storage system operators to take part in the market
- 5<sup>th</sup> step: Adapting market designs to the new needs and requirements
  - Assuring investors a return of invest
  - Profiting from all savings and efficiency gains in the complete power supply systems cause by the storage systems
  - Defining rules which assure a good balance between economically needed and existing storage technologies







# Market introduction program for batteries in PV systems in Germany



Small Storage systems: up to additional 30% less powerfrom the gridPV feed-in tariff 01/2013: 17 ct/kWh



### Grid connected PV battery systems



Aleksandra Sasa Bulvic-Schäfer – SMA

Armin Schmiegel, voltwerk electronics

Several manufacturers offer system solution

Roll-out starts

Institut für Stromrichtertechnik und Elektrische



| Rergy Management<br>(RMC pro*) – internal<br>power measurement<br>were measurement<br>battery DCDC<br>Cabinet<br>(Cistomer Power &<br>Solar Power (opt))              | Pores Switching & Home<br>Automation<br>Modular Battery<br>System (Live)<br>Hor Low Voltate<br>Tenent<br>Porton<br>Different<br>Strange<br>Different<br>Strange<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Different<br>Di |                    |       |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------|--|--|--|--|
| Andreas Piepenbrink – E                                                                                                                                               | E3/DC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Udo Möhrstedt, IBC | Solar |  |  |  |  |
| <ul> <li>Lead-acid batteries and lithium-ion batteries are technologies of choice – definitely an open race</li> <li>Products for the international market</li> </ul> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |       |  |  |  |  |
| 14.03.2013 Dirk Uwe                                                                                                                                                   | Sauer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    | 77    |  |  |  |  |

#### Summary



- There are technologies and there is space for sufficient storage systems for 100% renewable scenarios
- Different energy market will get linked to each other significantly
- "Power to gas" links the electricity market with other markets (e.g. mobility, space heating, etc.)
- Both is needed: Storage systems and grid extension
- Decentralised "double use" storage systems will dominate the "short-term" and the "daily" storage market
- Pumped hydro (where applicable) and gas storage systems are the options for the long-term storage market
- Cost is the main issue !!
- Without political willingness, not much will happen



### Energy Storage Options for a Renewable Power Supply System

SEI Seminar Series – Toronto, March 12th, 2013

**Dirk Uwe Sauer** 

email: sr@isea.rwth-aachen.de

#### Chair for Electrochemical Energy Conversion and Storage Systems

Institute for Power Electronics and Electrical Drives (ISEA) & Institute for Power Generation and Storage Systems @ E.ON ERC RWTH Aachen University

14.03.2013 Dirk Uwe Sauer



Institut für Stromrichtertechnik und Elektrische Antriebe

AACHEN

iST21



# Germany is exceeding (a little bit) its climate protection aims



#### The German "Energiewende" – history I



- German population is critical concerning nuclear power approx. since mid of 1970ies
- Since the Tschernobyl accident the German government started to invest significantly in renewable energies
- Several research institutes and university research including demonstration and market introduction programs for renewable energies were started
- Focus for Germany in the electricity sector is on wind power and photovoltaics, solar thermal systems for residential buildings and some solar thermal power generation for the use outside Germany
- All governments, independent from the political party, supported the programs continuously
- Most important instrument is the feed-in tariff.

14.03.2013 Dirk Uwe Sauer

# Feed-in tariff for accelerated market introduction of renewables



- The feed-in tariff guarantees every operator of a renewable power plant a full repayment of the investment incl. O&M costs and capital costs by paying a fixed fee per kWh delivered to the grid.
- Payment only for delivered kWhs, no upfront investment subsidy.
- Responsibility for keeping the system running stays with the operator.
- Renewable energies have priority in the power market.
- Shut-down is allowed only in case of grid problems.
- Extra costs are distributed to (almost) all users of electricity in Germany.
- Annual reduction of the feed-in tariffs for newly installed systems assures cost pressure on manufacturers.
- For photovoltaics the feed-in tariff is meanwhile adjusted monthly to limit the newly installed capacity.





14.03.2013

Dirk Uwe Sauer

85

### Solarpark Gut Erlasee

#### Karlsruhe garbage dump





#### Solarpark Lieberose







Quelle: BSW-Solar, Bundesnetzagentur www.solarwirtschaft.de







14.03.2013

Dirk Uwe Sauer



#### Feed-in tariff extremely successful



- Mass production resulted in a significant reduction in prices for PV systems.
- Roof-top PV systems have production costs around 15 to 16 €ct/kWh
- Last year the first free-field PV system showed costs below 10 €ct/kWh
- Both at around 1000 kWh/m<sup>2</sup>/year solar radiation
- Southern Europe has 1500 to 1800 kWh/m²/year resulting in 10 €ct/kWh (roof-top) to 6 €ct/kWh (free field) – today!
- North Africa has 2000 and more kWh/m²/year resulting in 8 €ct/kWh (roof-top) to 5 €ct/kWh (free field) – today!



### The German "Energiewende" – history II



- In 2001 the national government made a contract with the power plant operators to fade out nuclear power plants until approx. 2022 (social democratic party and green party in power)
- Independent from this the German government has committed itself to reduce green house gas emissions by 2050 by 85% or more
- In autumn 2010 the national government (conservative party and liberal party) increased the maximum operation time by 14 years on average for the nuclear power plants. The CO<sub>2</sub> reduction goal remained unchanged.
- This was highly criticized by a majority of the population and the industry which prepared itself for the fade out, e.g. by building localized cogeneration power plants.
- In April 2011 after Fukushima an immediate shut down of approx. half of the nuclear power plants and a fade out until 2021 of the remaining plants was decided by the same government, called "Energiewende"



## Share of renewable energies in Germany's energy market



93

Institut für Stromrichtertechnik und Elektrische Antriebe

AACHEN



# Development of electricity production from renewables and $CO_2$ -emissions until 2020



Institut für Stromrichtertechnik und Elektrische

AACHEN

isten i



#### Power generation mix in Germany in 2012



14.03.2013

Dirk Uwe Sauer



# Development of jobs in the renewable energy sector in Germany



# Renewable Energy in Germany: 300,000 jobs in 2009



Institut für Stromrichtertechnik und Elektrische

aachen

Institut für Stromrichtertechnik und Elektrische Antriebe

HAACHEN

issi द्य 🕅

turnover from operating RE

plants: 12.9 bn Euro

#### Annual investment in 2011 reached almost 23 billion Euro





#### Source: BMU, as of 06/2012

14.03.2013

Dirk Uwe Sauer



### Share of renewable power generation

- Years 1990 2012
- Germany

Anteil erneuerbarer Energien an der Bruttostromerzeugung in Deutschland in den Jahren 1990 bis 2012

www.unendlich-viel-energie.de



statista 🖍

**Dirk Uwe Sauer** 





# Renewable energies in the hands of the people





Share of renewable energies in Germany's electricity consumption until 2020





#### Problems



- In the past 25 years emphasis was put mainly on the development and market introduction of renewable power generators.
- Finally the increase in installed renewable capacity was much faster even compared with the most optimistic outlooks.
- This resulted more or less suddenly in several problems:
  - Merit order process for price-building on the power exchange is not working well anymore due to the large amount of power generation at differential costs near zero.

➔ Prices and price spreads at the power exchange decrease and make it difficult for conventional power plants & pumped hydro plants to earn money

- Grids are not prepared for the additional power flows
- Additional storage systems are not available

# Installed power plant capacities in Germany by the end of 2012



### End-user electricity costs in Germany



Institut für Stromrichtertechnik und Elektrische

HFN



# Grid structure and grid restrictions for power flows





# Prediction of needed storage capacities is difficult, because it is very sensible to ...

- Institut für Stromrichtertechnik und Elektrische Antriebe
- ... power plant mix (share of fluctuating and non-fluctuating renewable energies, conventional power plants, e.g. gas turbines w/o CCS)
- ... grid expansion, especially trans-national grid expansion
- ... costs of storage technologies
- ... capacity of storage systems with double use

# Grid structure and grid restrictions for power flows





# Grid structure and grid restrictions for power flows





#### Scenario 20xx – 100% renewables



- No conventional power plants available anymore (assumption: no carbon capture and storage technology in operation)
- → Storage needs in transport grids
- Primary reserve
- Secondary / minute reserve
- Reserve capacities for extended periods without renewable power generation in the range of a days to weeks
- → Storage needs in distribution grids
- Local congestions in the grid due to high penetration of decentralised power generators (mainly PV)
- Optimisation of self-consumption of PV systems

14.03.2013 Dirk Uwe Sauer