

Recent Solar Technologies Developments at FES and NRC: Potential applications in buildings

Farid Bensebaa, PhD

26 January 2012 Ryerson University

A different strategy for solar energy is needed!

- Reproducing the fossil fuel strategy
- > Technology push vs. market pull
- Must address market/social needs

Large scale solar power plant (50-200 MW)

F. Bensebaa, Solar based large scale power plants: what is the best option? *Progress in Photovoltaics 2011*

- O&M > 4%
- First solar power plants: bankrupt!
- Desertec: a big but a bad idea!
- IEA Task-Force 8: energy from the desert
- IRENA?

Capital cost of nuclear power generation

Ref. unknown

Solar-Nuclear kWh cost comparison

Ref. unknown

Solar-Nuclear kWh cost comparison

A schematic representation of smart grid network

Smart Grid and Renewable Energy, 2011, 2, 305-311

Market needs!

- Glass based modules are heavy, expensive
- Flexible modules (a-Si) have low efficiency.

PV technologies and applications for BIPV

Module and Cell Efficiency								
Technology	Thin Film					Crystalline Silicon		
	(a-SI)	(CdTe)	CI(G)S	a-SI/ µSI	Dye s. cells	Mono	Multi	
Cell efficiency Module efficiency	4-7%	8-10%	7-11%	6-8%	2-4%	16-22% 13-19%	14-16% 12-15%	
Area Needed per KW (for modules)	~ 15 m²	~ 11m²	~ 10m²	~12m²		~7m²	~8m²	

http://www.biosolar.com/products.html#super

NRC·CNRC

17.6% efficiency flexible CIGS solar cell on plastic

Tiwari's group (EMPA)

NRC technology: Gen. III CIGS

Green Chemistry Journal 2010 & PCT patent 2007

Personalize with title, slogan or I/B/P name in master slide

NRC.CNB

Non-vacuum process for module assembly

F. Bensebaa, "TRANSPARENT AND/OR PHOTOVOLTAIC SOLAR CELL AND MODULE", F. Bensebaa Canadian Patent CIPO CA2621665, 19 Feb. 2008

Personalize with title, slogan or I/B/P name in master slide

NRC.CNRC

Solar Power Light Post

Patent 61/504,507

For installation on streets, parking lots, highways, parks, etc.

Option 1: Off-grid

Autonomous (int. batteries)Does not require electrical infrastructure

Option 2: Grid-tied

Distributes power into the grid during daylight hours (inverter)
Consumes power from the grid during night time

Other platform uses:

- communication (WiFi, GSM)
- cameras
- weather stations

• solar farming name in master slide

Solar heating (air & water)

•High efficiency is particularly important in low solar radiation regions such as Canada.

 Need for high absorption coefficient using low production cost and operating at intermediary temperature range (200 – 300 °C).

Efficiency vs. temperature for different coatings

But selective coating tends to degrade at high temperature in air!

NRC.CNR

Jacque Amory, F. Bensebaa, Jose Etcheverry, FES-NRC Internal Report

Thermal yields and cost comparisons

	Yield (kWh/m2)	Cost (US\$/m2)
Unglazed stainless steel absorber	250-300	140-160
Flate-plate collector	350-500	200-350

Advantages of the unglazed collector:

- 1. The absorber can replace the roof skin, saving a zinc sheeting,
- 2. Suitable for a diversity of roof forms
- 3. Aesthetic solution for sheet metal roofs.

Disadvantages:

- 1. Larger surface area is required,
- 2. Lower energy efficiency.
- 3. Degradation at higher temperature

Solar thermal absorber on flexible substrate

TiNOX technology

4) Copper: great IR reflector and highest heat conductivity

Gradient nano-dispersion film: high α/ϵ

Spectrum 15 Spectrum 14 Spectrum 3 Spectrum 10 Spectrum 4 Spectrum 13 Spectrum 12 Spectrum 12 Spectrum 12 Spectrum 13 Spectrum 12 Spectrum 13 Spectrum 12 Spectrum 12 Spectrum 13 Spectrum 12 Spectrum 12 Spectrum 13 Spectrum 12 Spectrum 13 Spectrum 12 Spectrum 13 Spectrum 13 Spectrum 13 Spectrum 14 Spectrum 13 Spectrum 14 Spectrum

а

Collaboration with Steve Baksa (Vale-Inco)

Technology solutions for flexible and cost effective solar thin films exist!

Current policies need improvements

Thank-you

